VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki
Identification and characterization of Fluorescent Protein from marine organisms and potentially applications

von Dr. Tiziana Masullo

vorherige Seite | zur Übersichtsseite | folgende Seite

Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende

[1.] Tim/Fragment 013 01 - Diskussion
Zuletzt bearbeitet: 2014-10-25 07:16:35 Hindemith
BauernOpfer, Fragment, Gesichtet, Nienhaus 2006, SMWFragment, Schutzlevel sysop, Tim

Typus
BauernOpfer
Bearbeiter
SleepyHollow02
Gesichtet
Untersuchte Arbeit:
Seite: 13, Zeilen: 1-10
Quelle: Nienhaus 2006
Seite(n): 4216, Zeilen: l.col.: 2 ff.
The schemes in figure 5, A and B, show the tightly coupled system of two protonatable groups between which protons can be shuttled. The small ratio between neutral and anionic population implies that only slight differences in free energies exist between the two conformations in the electronic ground state.

Fig. 5. Schematic representation of the different protonation states of the AsGFP499 chromophore and its environment that are proposed to cause the spectral changes. (Nienhaus et al., 2006).

Upon photon absorption, this balance is disturbed. Phenols typically become more acidic upon electronic excitation (Tsien, 1998; Voityuk et al., 1998); and therefore, we expect efficient excited state proton transfer (ESPT) to Asp158, as is inferred from the observation that excitation in the A and B bands is equally efficient for fluorescence in the 499nm emission band for pH ˂ 8. Evidently, protonation of Asp158 is a key ingredient in the proton shuttling mechanism described above.

The schemes in Fig. 6, A and B, show the tightly coupled system of two protonatable groups between which protons can be shuttled. The small ratio between neutral and anionic population implies that only slight differences in free energies exist between the two conformations in the electronic ground state. Upon photon absorption, this balance is disturbed. Phenols typically become more acidic upon electronic excitation (9,52); and therefore, we expect efficient excited state proton transfer (ESPT) to Asp158, as is inferred from the observation that excitation in the A and B bands is equally efficient for fluorescence in the 499-nm emission band for pH < 8.

To further support the model presented in Fig. 6 by experimental evidence, we have produced the mutant Asp158Asn, which has its protonatable carboxyl residue replaced by a nonprotonatable carboxamide. Evidently, protonation of Asp158 is a key ingredient in the proton shuttling mechanism described above.

FIGURE 6 Schematic representation of the different protonation states of the asFP499 chromophore and its environment that are proposed to cause the spectral changes in Fig. 4.


9. Tsien, R. Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–544.

52. Voityuk, A. A., M. E. Michel-Beyerle, and N. Ro¨sch. 1998. Quantum chemical modeling of structure and absorption spectra of the chromophore in green fluorescent proteins. Chem. Phys. 231:13–25.

Anmerkungen

The source is given for the figure and its caption, but not for the remainder of the text.

Sichter
(SleepyHollow02), Hindemith


[2.] Tim/Fragment 013 12 - Diskussion
Zuletzt bearbeitet: 2014-11-27 22:14:55 Hindemith
Andresen et al 2005, Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schutzlevel sysop, Tim

Typus
KomplettPlagiat
Bearbeiter
Hindemith
Gesichtet
Untersuchte Arbeit:
Seite: 13, Zeilen: 12-15
Quelle: Andresen et al 2005
Seite(n): 13070, Zeilen: l.col: 27 ff.
Recently, novel GFP-like fluorescent proteins have been discovered (Chudakov et al., 2003; Lukyanov et al. 2000; Ando et al., 2004) that can be reversibly photoswitched between a fluorescent (on) and nonfluorescent (off) state, that is, they are optically bistable and fluorescent. Recently, novel GFP-like fluorescent proteins have been discovered (4–6) that can be reversibly photoswitched between a fluorescent (on) and nonfluorescent (off) state, that is, they are optically bistable and fluorescent.

4. Ando, R., Mizuno, H. & Miyawaki, A. (2004) Science 306, 1370–1373.

5. Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., Lukyanov, S. & Lukyanov, K. A. (2003) Nat. Biotechnol. 21, 191–194.

6. Lukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X. N., Fang, Y., et al. (2000) J. Biol. Chem. 275, 25879–25882.

Anmerkungen

The source is given at the end of the next paragraph on the next page.

Sichter
(Hindemith), SleepyHollow02



vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:Hindemith, Zeitstempel: 20141127222223