VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki
Investigative Data Mining: Mathematical Models for Analyzing, Visualizing and Destabilizing Terrorist Networks

von Nasrullah Memon

vorherige Seite | zur Übersichtsseite | folgende Seite

Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende

[1.] Nm/Fragment 111 17 - Diskussion
Zuletzt bearbeitet: 2012-04-19 22:32:36 Hindemith
Fragment, Gesichtet, Holmgren 2006, KomplettPlagiat, Nm, SMWFragment, Schutzlevel sysop

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Untersuchte Arbeit:
Seite: 111, Zeilen: 17-27
Quelle: Holmgren 2006
Seite(n): 956, Zeilen: right column 18-32
In graph theory a number of measures have been proposed to characterize networks. However, three concepts are particularly important in contemporary studies of the topology of complex networks: degree distribution, clustering coefficient, and average path length (Albert, R., and Barabasi, A.L. (2002); Dorogovtsev, S. N., and Mendes, J. F. F. (2002); Newman, M. E. J. (2003)).

3.4.1 Degree Distribution

The degree is the number of edges connecting to the i vertex. The vertex degree is characterized by a distribution function P(k), which gives the probability that a randomly selected vertex has k edges. Recent studies show that several complex networks have a [heterogeneous topology, i.e., some vertices have a very large number of edges, but the majority of the vertices only have a few edges.]

In graph theory, a number of measures have been proposed to characterize networks. However, three concepts are particularly important in contemporary studies of the topology of complex networks: degree distribution, clustering coefficient, and average path length. [EN 1-3]

2.2.1. Degree Distribution

The degree is the number of edges connecting to vertex i. The vertex degree is characterized by a distribution function P(k), which gives the probability that a randomly selected vertex has k edges. Recent studies show that several complex networks have a heterogeneous topology, i.e., some vertices have a very large number of edges, but the majority of the vertices only have a few edges.


[EN 1]. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

[EN 2]. Dorogovtsev, S. N., & Mendes, J. F. F. (2002). Evolution of networks. Advances in Physics, 51, 1079–1187.

[EN 3]. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

Anmerkungen

Nearly identical, though the source is not mentioned anzwhere.

Sichter
(Graf Isolan), Hindemith



vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:Hindemith, Zeitstempel: 20120419223311