von Nasrullah Memon
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Nm/Fragment 100 01 - Diskussion Zuletzt bearbeitet: 2014-01-11 10:20:53 Hindemith | Brandes Erlebach 2005, Fragment, Gesichtet, Nm, SMWFragment, Schutzlevel sysop, Verschleierung |
|
|
Untersuchte Arbeit: Seite: 100, Zeilen: 1-16 |
Quelle: Brandes_Erlebach_2005 Seite(n): 8, 9, Zeilen: - |
---|---|
A graph is called loop-free if it has no loops.
A graph is a subgraph of the graph if and . It is a (vertex-)induced graph if contains all edges that join vertices in . Often it is useful to associate numerical values (weights) with the edges or vertices of a graph . The graph having weights is known as weighted graph. Here we only discuss edge weights. Edge weights can be represented as a function that assigns each edge , a weight . Depending on the context, edge weights can describe various properties such as strength of interaction, or similarity. One usually tries to indicate the characteristics of the edge weights by the choice of the name of the function. For most purposes, an unweighted graph is equivalent to a weighted graph with unit edge weights for all . |
[Page 8, line 14]
A graph is called loop-free if it has no loops. [Page 9, line 4-6] A graph is a subgraph of the graph if and . It is a (vertex-)induced subgraph if contains all edges that join vertices in . [Page 8, line 16ff] Weighted graphs. Often it is useful to associate numerical values (weights) with the edges or vertices of a graph . Here we discuss only edge weights. Edge weights can be represented as a function that assigns each edge a weight . Depending on the context, edge weights can describe various properties such as [...] strength of interaction, or similarity. One usually tries to indicate the characteristics of the edge weights by the choice of the name for the function. [...] For most purposes, an unweighted graph is equivalent to a weighted graph with unit edge weights for all . |
The source is not given. The definitions given here are certainly standard and don't need to be referenced. The author however copies not only the definitions but also their formulation word for word. The symbol for the real numbers used as the domain of the weight function is reproduced only as a box in the thesis, indicating that this character was not available in the font used. |
|
[2.] Nm/Fragment 100 24 - Diskussion Zuletzt bearbeitet: 2012-05-21 10:48:00 WiseWoman | Fragment, Gesichtet, Nm, SMWFragment, Schutzlevel sysop, Stephenson and Zelen 1989, Verschleierung |
|
|
Untersuchte Arbeit: Seite: 100, Zeilen: 24-30 |
Quelle: Stephenson and Zelen 1989 Seite(n): 2-3, Zeilen: p.2, 31-35 - p.3, 1-3 |
---|---|
A review of key centrality concepts can be found in the papers by Freeman (1978, 1979). This work has contributed significantly to the conceptual clarification and theoretical application of centrality. He provides three general measures of centrality termed “degree”, “closeness”, and “betweenness”. His development was partially motivated by the structural properties of the center of a star graph. | [page 2]
A review of key centrality concepts can be found in the papers by Freeman (1979a,b). His work has significantly contributed to the conceptual clarification and theoretical application of centrality. Motivated by the work of Nieminen (1974), Sabidussi (1966), and Bavelas (1948), he provides three general measures of centrality termed [page 3] “degree”, “closeness”, and “betweenness”. His development is partially motivated by the structural properties of the center of a star graph. |
Shortened but otherwise identical. Not marked as a citation, no reference given. |
|
Letzte Bearbeitung dieser Seite: durch Benutzer:WiseWoman, Zeitstempel: 20120521104916