von Katja Stammen
Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende
[1.] Kst/Fragment 060 01 - Diskussion Zuletzt bearbeitet: 2021-11-13 10:19:52 Mendelbrno | Fragment, Gesichtet, Kst, SMWFragment, Schutzlevel sysop, Wikipedia Solow-Modell 2018, ÜbersetzungsPlagiat |
|
|
Untersuchte Arbeit: Seite: 60, Zeilen: 1 ff. (entire page) |
Quelle: Wikipedia Solow-Modell 2018 Seite(n): online, Zeilen: - |
---|---|
The marginal returns of capital and effective labour are positive and decrease with increasing use of the respective factor. If more effective labour is used, production increases, but it increases less if much effective labour is already used (ibid.). Mathematically this means that the first partial derivatives of the production function after effective labour and capital are positive, but the respective second derivatives are negative.
In addition, the so-called Inada conditions must be fulfilled. This means that the marginal product of each production factor converges towards infinity if only the respective factor input strives towards 0. If the respective factor input strives towards infinity, the marginal product of the factor converges towards 0.
Thus, output cannot be increased arbitrarily in an economy with a given technology, even if the labour input or capital input is constantly increased. Accordingly, a positive growth rate of income in the case of a neoclassical production function without technical progress is not possible in the long run if the Inada conditions are valid (ibid.). In its simplest form, without extensions as described above, the Solow model also refers to a closed economy without state activity. Both income and production must correspond in such an economy. For this reason, production can be used either for consumption or for investment (output use equation).
Gross investment also corresponds ex post to the rate saved by the economy: 𝑆𝑡 = 𝐼𝑡. In a closed economy, therefore: 𝑆𝑡 = 𝑌𝑡 − 𝐶𝑡. The savings behaviour of the economy is modelled by a constant savings ratio (s = const.): 𝑆𝑡 = 𝑠 ∗ 𝑌𝑡, where s is between 0 and 1 and is assumed as an exogenous parameter (ibid.). SOLOW, R. M. 1956. A Contribution to the Theory of Economic Growth. In: Quarterly Journal of Economics. Volume 70: 65-94. |
In seiner einfachsten Form bezieht sich das Solow-Modell außerdem auf eine geschlossene Volkswirtschaft ohne Staatstätigkeit. Einkommen und Produktion müssen sich in einer solchen Volkswirtschaft entsprechen, die Produktion kann deswegen entweder für Konsum oder für Investitionen verwendet werden (Outputverwendungsgleichung): 6. Nach Ken-Ichi Inada, der sie in seinem 1963 erschienenen Artikel On a Two-Sector Model of Economic Growth: Comments and Generalization (Review of Economic Studies 30.2, S. 119–127) formulierte. |
Continued from previous page. Continues on next page. The true source is not given. |
|
Letzte Bearbeitung dieser Seite: durch Benutzer:Numer0nym, Zeitstempel: 20210928173411