VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki
Registrieren


Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes
Untersuchte Arbeit:
Seite: 23, Zeilen: 19-26, 27-28
Quelle: Ebong et al 2006
Seite(n): H2015, Zeilen: r. Spalte: 6 ff.
Connexin 37 and Connexin 40 (Cx37, Cx40) are the major gap junction proteins expressed in vascular endothelial cells[85-89]. These proteins are very dynamic, exhibiting rapid turnover times and variable expression patterns. Although the extent of combinations of different connexins within connexons and channels remains unclear, immunohistochemical and immunocytochemical studies demonstrate differential expression and localization patterns of both vascular connexins in endothelium, depending on species[97], vascular bed[98-100], and local hemodynamics[101].[...] For the microcirculation in vivo studies implicate Cx40 as the constitutive vascular gap junction protein across species [and vascular bed, playing an important role in coupling between cells in the vascular wall[78, 97-98], particularly in response to changes in tissue metabolic demand.]

78. de Wit, C., et al., Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res, 2000. 86(6): p. 649-55.

85. Bruzzone, R., et al., Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell, 1993. 4(1): p. 7-20.

86. Larson, D.M., C.C. Haudenschild, and E.C. Beyer, Gap junction messenger RNA expression by vascular wall cells. Circ Res, 1990. 66(4): p. 1074-80.

87. Little, T.L., E.C. Beyer, and B.R. Duling, Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol, 1995. 268(2 Pt 2): p. H729-39.

88. Reed, K.E., et al., Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J Clin Invest, 1993. 91(3): p. 997-1004.

89. Van Rijen, H., et al., Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am J Physiol, 1997. 272(1 Pt 1): p. C117-30.

97. van Kempen, M.J. and H.J. Jongsma, Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol, 1999. 112(6): p. 479-86. 98. Hill, C.E., et al., Heterogeneity in the distribution of vascular gap junctions and connexins: implications for function. Clin Exp Pharmacol Physiol, 2002. 29(7): p. 620-5.

99. Pepper, M.S., et al., Coupling and connexin 43 expression in microvascular and large vessel endothelial cells. Am J Physiol, 1992. 262(5 Pt 1): p. C1246-57.

100. Yeh, H.I., et al., Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res, 1998. 83(12): p. 1248-63.

101. Gabriels, J.E. and D.L. Paul, Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res, 1998. 83(6): p. 636-43.

Connexin 37, 40, and 43 (Cx37, Cx40, Cx43, respectively) are the major gap junction proteins expressed in vascular endothelial cells (7, 32, 34, 39, 45). These proteins are very dynamic, exhibiting rapid turnover times and variable expression patterns. [...]

Although the extent of combinations of different connexins within connexons and channels remains unclear, immunohistochemical and immunocytochemical studies demonstrate differential expression and localization patterns of all three vascular connexins in endothelium, depending on species (44), vascular bed (25, 37, 53), and local hemodynamics (21). In vivo studies implicate Cx40 as the constitutive vascular gap junction protein across species and vascular bed, playing an important role in coupling between cells in the vascular wall (44).


7. Bruzzone R, Haefliger JA, Gimlich RL, and Paul DL. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4: 7–20, 1993.

21. Gabriels JE and Paul DL. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83: 636–643, 1998.

25. Hill CE, Rummery N, Hickey H, and Sandow SL. Heterogeneity in the distribution of vascular gap junctions and connexins: implications for function. Clin Exp Pharmacol Physiol 29: 620–625, 2002.

32. Larson DM, Haudenschild CC, and Beyer EC. Gap junction messenger RNA expression by vascular wall cells. Circ Res 66: 1074–1080, 1990.

34. Little TL, Beyer EC, and Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol Heart Circ Physiol 268: H729–H739, 1995.

37. Pepper MS, Montesano R, el Aoumari A, Gros D, Orci L, and Meda P. Coupling and connexin 43 expression in microvascular and large vessel endothelial cells. Am J Physiol Cell Physiol 262: C1246–C1257, 1992.

39. Reed KE, Westphale EM, Larson DM, Wang HZ, Veenstra RD, and Beyer EC. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J Clin Invest 91: 997–1004, 1993.

44. Van Kempen MJ and Jongsma HJ. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112: 479–486, 1999.

45. Van Rijen H, van Kempen MJ, Analbers LJ, Rook MB, van Ginneken AC, Gros D, and Jongsma HJ. Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am J Physiol Cell Physiol 272: C117–C130, 1997.

53. Yeh HI, Rothery S, Dupont E, Coppen SR, and Severs NJ. Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83: 1248–1263, 1998.

Anmerkungen

Ein Verweis auf die Quelle fehlt.

Der Text wird zum zweiten mal verwendet, siehe Fragment 017 10 und Fragment 019 01.

Sichter
(Hindemith), SleepyHollow02