|
|
Untersuchte Arbeit: Seite: 15, Zeilen: 2-8 |
Quelle: Schaper and Scholz 2003 Seite(n): 1150, Zeilen: 6ff |
---|---|
After peripheral artery occlusion in rabbits and mice, arteriogenesis proceeds much faster than angiogenesis because of a structural dilatation of pre-existing collateral vessels followed by mitosis of all vascular cell types, which restores resting blood flow within 3 days. Recovery of dilatory reserve (maximal flow) takes longer[20]. The slower angiogenesis is unable to significantly restore flow even if angiogenesis reduces the minimal terminal resistance of the entire chain of resistors by new capillaries in parallel. Future therapeutic efforts should be directed at stimulating arteriogenesis.
20. Schaper, W. and D. Scholz, Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol, 2003. 23(7): p. 1143-51. |
After peripheral artery occlusion in rabbits and mice, arteriogenesis proceeds much faster than angiogenesis because of a structural dilatation of preexisting collateral vessels followed by mitosis of all vascular cell types, which restores resting blood flow within 3 days. Recovery of dilatory reserve (maximal flow) takes longer. The slower angiogenesis is unable to significantly restore flow even if angiogenesis reduces the minimal terminal resistance of the entire chain of resistors by new capillaries in parallel. Future therapeutic aims should be directed at stimulating arteriogenesis. |
Die Quelle ist angegeben. Dem Leser wird aber durch die Platzierung des Quellenverweises nicht klar, dass der gesamte Abschnitt aus der Quelle stammt. |
|